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Abstract

In this paper, we propose an expanded set of design criteria for the generation of DES-like S-
boxes which enable DES being immunized against three known robust cryptanalysis, i.e., differential,
Improved Davies’ and linear cryptanalysis and we also suggest a set of new 8 DES-like S-boxes
generated by our proposed design criteria in order to replace with the current 8 DES S-boxes. The
computer simulation leads us to conclude that the breaking complexity of the strengthened DES (we
call s°DES) by three powerful cryptanalysis is no more efficient than the key-exhaustive search.

1 Introduction

Until now, three powerful cryptanalysis have been published to break DES (Data Encryption Standard) [1]
more efficiently than the 56-bit key exhaustive search. One is the DC (Differential Cryptanalysis) pro-
posed by Biham and Shamir [2],[4] in 1990. The DC is a kind of chosen plaintext attack in a sense that
an attacker has to choose 27 plaintexts and their corresponding ciphertexts to find an unknown 56-bit
DES key. The other attack, known as LC (Linear Cryptanalysis), is more feasible than DC and was
proposed by Matsui [6] in 1993. The overall complexity to break DES by LC has been reduced [14] to
be 243 known plaintexts and ciphertexts pairs comparing to the initial complexity of 2%7. Moreover, the
Improved version of Davies’ attack proposed by Biham and Biryukov [13] was found to break DES with
the complexity of 2°°. The common point of three cryptanalysis is to use the cryptanalytic properties of
DES S-boxes which play an important role in making DES work as nonlinear cryptographic functions.

Two researches in [3] and [5] have been reported to strengthen DES resistant against DC by only
replacing the current DES S-boxes with new S-boxes based on the different design criteria rather than
the well-known 6 design criteria of DES S-box. Two DES-like cryptosystems are named as s?DES
and $3DES, respectively. By the efficient search techniques [10],[11] evaluating on the overall strength
of DES against DC and LC, the relative security of the full round DES and s*DES was found to be
s?DES < DES < s*DES against DC and s°DES < DES < s?DES against LC.

In this paper, we propose an expanded set of design criteria for the generation of DES-like S-boxes
which make DES be immunized against three robust attacks. We also suggest a set of DES-like S-boxes
satisfying our proposed design criteria to replace the current DES S-boxes with new S-boxes. Finally, we

evaluate the breaking complexity of new DES (we call s>DES) by three powerful attacks.

2 Design Criteria of DES S-boxes

The followings are the well-known 6 design criteria of DES S-boxes :



(S-1) No S-box is a linear or affine function.
(S-2) Changing one bit in the input of an S-box results in changing at least two output bits.

(S-3) The S-boxes were chosen to minimize the difference between the number of 1’s and 0’s when any

single bit is held constant.
(S-4) S(x) and S(x @ (001100)) differ at least two bits.
(S-5) S(x) # S(x @ (116f00)) for any e and f.
(S-6) S(x) # S(x & (0abcd0)) for any a. b, ¢, and d, abcd # 0000.

In addition to these criteria, Coppersmith [12] has recently published additional design criteria of DES

S-boxes, such as

(S-7) For a given nonzero input XOR and output XOR, no more than 8 of the outputs may exhibit the
given output XOR among the 32 pairs of inputs exhibiting the given input XOR.

(S-8) Similar to (S-7), but stronger restrictions in the case zero output XOR, for the case of 3 active

S-boxes on round z.
(S-9) Other criteria dealt with other issue, such as ease of implementation.

He has described that most of the criteria are aimed at increasing the number of active S-boxes (against
DC) involved over the 12 or 16 rounds of the “probable pattern”, say this total number is k. Then (S-7),
along with the simplifying assumption of independence, puts an upper bound of (1/4)* on the overall
probability of this “probable pattern”.

In other words, (S-7) means that the maximal entry in a XOR distribution table of any DES S-boxes
is 16 and (S-8) means that nonzero input XOR with 3 active S-boxes resulting the same output always
exists with some probability. From all criteria, we can see that the DES designers might initially put in

mind the strength of DES against DC.

3 Resistance against DC

The important properties of DES-like S-boxes are derived through an analysis of tables showing a group

of particular distributions—called the pairs XOR distribution—defined as follows:

Definition 1 (XOR distribution table) A table that shows the distribution of input XORs and output
XORs of all possible pairs of an S-box is called the pairs XOR distribution table of the S-box. In this
table, each row corresponds to a particular input XOR, each column corresponds to a particular output
XOR, and the entries in the table count the number of possible pairs with such an input XOR and an
output XOR.

Since the pairs XOR, distribution in any DES S-box are used for DC, some intuitive definitions which
measures the level of its resistance against DC are necessary. We can consider how many entries appear

in the pairs XOR distribution % of entry, denoted by ji4.

= " x100 (1)
Ha = G4x16



where nz denotes the number of non-zero entries in a pairs XOR, distribution table. In order to measure
how well the values of all entries are distributed from the ideal (uniform) value of enfry, the standard

deviation, o4 of all entries can be checked by
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where e;; is a measured number of entry in pairs XOR distribution table. We can also check the nontrivial®
maximum value of entries, denoted by A4, in DES S-boxes since the relatively higher valued entries are
directly employed for DC. We simply call these three parameters differential characteristics of an S-box.
Differential characteristics of DES S-boxes are measured in Table 2.

Up to now, the 2-round iterative characteristics (& — 0 with some prob. p) have ever been known to be
the basic tool in breaking DES by DC. The 2-round iterative characteristic ® = 1960000, with probability
ﬁ 1s found to be close to the best characteristic for attacking the full 16-round DES. We discuss cases
where 2-round iterative characteristics occur in DES and suggest an efficient design criterion of DES-like
S-boxes which guarantees to exhibit 2-round iterative characteristics with very low probability, i.e., the
method to immunize DES against DC is to find any necessary condition such that 2-round iterative
characteristics exist with more than 3 active S-boxes.

The careful examination of E-expansion of DES F-functions leads us to the following theorem.

Theorem 1 For a given DES-like S-boz satisfying 6 design criteria, the possibilities that nonzero input

XOR with 8 active S-bozes results in the nonzero output XOR is one of the followings :
(A-1) S(x) # S(x B(00f11)) for any e and f.
(A-2) S(x) # S(x ®(10ef00)) for any e and f.
(4-3) S(x) # S(x ©(116£10)) for any e anf f.

If we combine 6 design criteria with A-3, we can obtain the following important theorem to immunize
DES against DC.

Theorem 2 If nonzero input XOR 00a1a203G4 A30405060708 ... Opn_ 705 _gCGn 50y 40y 30,9

1 2 -1
(3020, 10,00 for eachn = 43+ 2,(i = 1,...,1) is given to | neighbouring DES S-bozes satisfying 6

l
criteria and (A-3), output XOR will never be zero.

The above theorem means that we can only find 2-round iterative characteristics with 8 active S-boxes,
i.e., we cannot find any 2-round iterative characteristics with less than 7 active S-boxes. Combining (A-3)

and (S-5), the necessary condition to immunize DES against DC is :
Condition 1 (D-1) S(x) # S(x ® (11efg0)) for any efg.

Note that if DES-like S-boxes meet (D-1), DES whose S-boxes are replaced with new S-boxes can be
resistant against Improved Davies’ attack [13],[17].

1Tt is trivial that the entry always has a value of 64 when the input XOR. and output XOR of any DES-like S-box are
zero.



4 Resistance against LC
The following notations are used hereinafter.

e [; : The input value of ¢-th round in DES F-function.
e (); : The output value of i-th round in DES F-function.
e K, : The key value of i-th round in DES F-function.

o X[Z] = ®rezX[k], where Z C {0,1,...,47} and X[k] is the k-th bit of X which is one of I;, O;
and K;.

e a, : The hexadecimal value of a.
e W(a) : The Hamming weight of a.
e For z,y € GF(2)™, z e y denotes the dot product of z and y.

Kim et al. [8],]9] have already suggested the necessary condition to design DES-like S-boxes which can
be resistant to LC. In this section, we will summarize those conditions and revise them by the computer

experiments.

4.1 TUniformity of a Linear Distribution Table

It is necessary to precompute the linear distribution table of DES-like S-boxes defined as below like DC

in order to break DES by LC.

Definition 2 (Linear distribution table) For a given DES S-box S, we define NS(a, ) as the num-
ber of times minus 32 out of 64 input patterns of S, such that an XORed value of the input bits masked
by a coincides with an XORed value of the output bits masked by 3, i.e.,

NS(a,8) = #{r€ GF?2)’|zea=S(z)e 3} —32

where a € GF(2)® and B € GF(2)*. We refer the complete table for every a and 3 to the linear distri-
bution table.For a specific S-boz, S; (i = 1,...,8), we denote its linear distribution table as NS;(a, f3).

In order to check the uniformity of a linear distribution table of any S-box, let us denote % of the entry
by wp; and the maximal entry by A; as the same way to check the uniformity of XOR distribution table.
Based on the computer experiments and theoretical analysis, the first necessary condition [9] to make

DES-like S-boxes to be immunized against LC is :

Condition 2 (L-1) The A; of any S-box should be less than 16.

4.2 Iterative Linear Approximation
The following definitions are necessary to understand the concept of LC.

Definition 3 (Linear approximation) For a given expression I[Z1] ® O[Z,] = K|[Zs] with probability
p + 1/2, this linear approzimation is denoted as A:I1[Z1], K[Z3] — O[Z3] with p. We denote this
expression as A, B,C,--- and sometimes omit the term K[Zs]. Also 6(A) denotes the set of S-bozes
necessary to express A and #6(A) = |6(A)|.



Definition 4 (nR iterative linear approximation) The n-round (simply, nR) iterative linear ap-
prozimation is defined by I1[Z1] & 1,[Z,] = K2[Z:]| ® -+ & K,,_1[Z,_1]. For the consecutive n-rounds,
the XORed values of n-2 keys in an (n-2)-round can be expressed by its input and output XORed values.
When this expression holds with probability g = p+1/2, the probability of this linear approzimation is to be
p. Also, we denote nR iterative linear approzimation as —Ay -+ A, _o— and its concatenated expression

as —Al"'An,Q —Anfg"'Al — .

To cryptanalyze n-round DES by LC in general, we need to find an useful linear approximation of
(n—1)-round DES. When the linear approximation of (n—1)-round DES holds with probability ¢ = p+ %,
the number of plaintexts which the attacker needs are about |p| 2 by Lemma 2 in [6]. Thus, a linear
approximation of 15-round DES is necessary to break the full 16-round DES. When this approximation
holds with probability p15, the necessary condition that LC is no more efficient than key-exhaustive search
is pfsz > 256 d.e., |p1s| < 2728, Thus, in order that DES can be resistant to LC, the main idea is to find
some necessary conditions such that DES-like S-boxes should have any linear approximation with the
small probability.

By Lemma 3 in [6], if we find an nR iterative linear approximation with probability p, then we can
also obtain (k- (n — 1) + 1)R linear approximation with probability 2*~'p* when nR iterative linear
approximation is applied k times. We discuss the necessary condition how to lower the probability of 3R,

4R, and 5R iterative linear approximations to prevent DES from being broken by a successful LC.

4.2.1 3R Iterative Linear Approximation

The 3R iterative linear approximation has a form of I1[Z1] ® I3[Z1] = K1[Z3], i.e., there exists a linear
correlation between key and output subblocks without input subblock as O;[Z;] = K;[Z,]. This case
always occurs when two outer bits of a DES S-box are given to two neighbouring S-boxes. Thus, we can

build the 3R iterative linear approximation from this case.

Theorem 3 There exists a 3R iterative linear approzimation if and only if the input of Si-hox and the

put of S(i+1)-box are 3, and 30,, respectively.

If NS;(3.,01) and NS;11(30,,32) are not equal to zero, we can build some 3R iterative linear approxi-
mations. From the 3R iterative linear approximation —A— with probability p, we can build the 15-round
linear approximation like —A—A—-A—-A— A— A— A— and the total probability for this approximation
to hold is 25p7. Thus, the necessary condition that this attack is no more efficient than key-exhaustive

search is 26|p|” < 2728 j.e.,|p| < 274 In other words,

NSi(342,81) NSiy1(304,82)
64 64

It any DES-like S-box satisfies (D-1), the values of NS(30,,08) and NS(31,,3) are always to be zero
for any (. Thus the LHS of Eq. (3) is always equal to zero.

2 < o2 3)

Condition 3 (L-2) S(x) # S(x & (11efg0)) for any efg.

Note that (L-2) is a simple and common design criterion to prevent DES from being broken by

successful DC, Improved Davies’ attack, and special case of LC.

ot



4.2.2 4R Tterative Linear Approximation

We discuss cases when a 4R iterative linear approximation occurs from two given linear approximations

such as,
A Ig[Zl]./KQ[Zg] — ()2[Z2} (4)
B [3[Y1]*K3[Y3] — 03[1/2] (5)
If we linearly approximate the 2nd round and 3rd round function of DES to A and B, respectively, I5[Z]
should be equal to the XORed value between the 3rd round output and 4th round input, and I3[Y7]

should be equal to the XORed value between the 1st round input and 2nd round output in order to get

an useful 4R iterative linear approximation.

Theorem 4 By concatenating two linear approzimations Eqns. (4) and (5) with probability p1 and pa,
respectively, the condition for building a 4R iterative linear approrimation is Z1 = Y, Zs = Yy. Also, the

4R iterative linear approximation is of the form
L{Z:]® L[Z1] = K[Zs] ® K;[Ys] (6)
with probability 2p1ps .

If the 4R iterative linear approximation —AB— with probability p is given, we can build the 15-round
linear approximation as —AB — BA — AB — BA — AB. The necessary condition that this attack is no

more efficient than key-exhaustive search is |24p%] < 2728 j.e., |p| < 2764,

Condition 4 (L-3) The followings (18 cases in total) are necessary so that the 4R iterative linear ap-

proximation will not occur.

o Sl-box : NS (4,4)=NS51(2,2) =0, S52-box: NSy(4,4) = NS5(2,1)=0

S9-box : NS5(8,4) = NS3(4,8) =0, S4-box: NSs(8,4) = NS4(2,2) =0

S5-box : NSs(16,1) = NS5(8,8) = NS5(2,4) =0

S6-box : NSs(16,4) = NSs(4,8) = NSg(2,2) =0
o S§7-box : NS7(4,8) = NS7(2.1) =0, 58-bozr : NSs(16,1) = NS5(2,4) =0

When DES-like S-boxes satisfying (L-3) are given, the necessary condition not to find 4R linear

approximation is as follows:
Condition 5 (L-4) For W(a),W(3) <2, [INS(a,)| < 8 where a € GF(2)% and B € GF(2)*.

We, however, have found that it was very difficult to find a set of 8 DES-like S-boxes satisfying (L-4)
by computer experiments. Thus we loose the maximum allowable values of |NS(a, )| upto 10 in an

empirical way but this would not disturb the strength of new DES-like S-boxes.

Condition 6 (Revised L-4) For W(a),W(3) < 2, [INS(a,B8)| < 10 where a € GF(2)® and 8 €
GF(2)*.



4.2.3 5R Iterative Linear Approximation

The following theorem points us cases where the possible 5R iterative linear approximations occur.

Theorem 5 When three linear approzimations are given by

A Ig[Zl],KZ[Zg] —_— 02[22]
B Ig[Yl]Kg[Yg] — ()3[Y2]
C I4[X1],K4[X3] — 04[)(2}7

we can obtain a SR iterative linear approximation only if 71 =Yes = X1.Y1 = Zo U Xo — Z5 N Xo, and

the 5R iterative linear expression —ABC— is of the form
L[Z:]® Is[Xo] = Ki[Z5] ® K3[Y3] @ Ka[X3).

Using the 5R iterative linear approximation —ABC—, we can build 15-round linear approximation as
—ABC — CBA — ABC — DE. The probabilities of D and E is less than 272 by L-1. If the probability
of —ABC— is p, |p|® should be less than 2728 4.e., |p| < 2794, Some computation leads us that

Condition 7 (L-5) For a € GF(2)%, 81 and 3, € GF(2)*,
W(a)=1and W(S, @ f2) =1 = |[NS(a, 1) - NS(ex, 32)| < 48.

We guess that L-2 causes |[NS(10,, 1) - NS(10,,. f.)| = 16 x 16 = 256 for some 8y, W (51 & f,) = 1.

Thus we could not find any DES-like S-boxes satisfying both (L-2) and (L-5). In order to revise (L-5),
we utilized the property of P-permutation in DES F-function such that :

Condition 8 (Revised L-5) If a # 10,
INS(a, B1) - NS(cx, 32)] < 48

Jor W(a)=1 and W(5 @ 32) =1
If o =10,

|NSk(a,61)NSk(aﬁg)| S 48 fOT ,61@62:1
INSi(cv,p1) - NSi(a. B2)] < 48 for 1@ P2 =4

for E=5,8 and ] = 6.

5 Comparison

Using the same method in [3], we have successfully found a set of DES-like S-boxes satisfying additional 5
conditions described in Section 4. In the appendix, we listed a set of DES-like S-boxes for s°DES 2 which
took about three monthes to generate by Hyundai Axil HWS310 Sparc workstation (22MIPS, 33MHz).

In this section, we measure the cryptographic strength of S-boxes themselves and evaluate the breaking

complexity of s°DES.

2The name of s*DES is skipped with intention since it was distributed in an informal way.



5.1 Local Properties

We compare the quantitative characteristics of S-boxes in DES and s'DES in various points of crypto-
graphic view and evaluate the goodness-of-fit of them.

We checked the nonlinearity of 4 Boolean functions: Z§ — Z» consisting of an S-box as shown in
Table 1. In the output bit column of this table, 4 denotes the most significant location of an output

vector and 1 denotes the least significant location of an output vector.

Table 1: Nonlinearity of S-boxes

DES s’DES s3DES s°DES

Box output bit output bit output bit output bit

1 2 1 3] 4 1 2 13| 4 1 2 13| 4 1 213 ] 4
S1 |18 20|22 (18 (22|20 |20 |22|16 |20 22|20 |20 |18 |20 |22
S2 22120 |18 |18 |24 |22 |22 2222|2220 |22 |18 |20 ] 20| 20
S3 |18 |22 | 20|18 |20 |24 | 22|22 |18 (22|20 |20 |22|22]|20| 18
S4 | 22122 22(22(20 (22 22|22|18 |24 (20|20 |20|22] 18| 22
S5 |22 120 |18 (20 |22 (2422|2420 |18 |18 | 22| 20| 22|20 | 22
S6 120202020 |22(22|20 2222|2018 | 12|20 |22 ] 18| 20
S7T |18 |22 |14 |20 |22 |20 |22 |18 |22 |18 |18 | 16 | 22 | 22 | 20 | 20
S8 22120 (20|22 |22(22|22 222022 |22]20|22|20 ]| 18| 22

It is clear that the nonlinearity of DES S-boxes ranges from 14 to 22, the nonlinearity of s2DES and
s°DES ranges from 18 to 24, and the nonlinearity of s>DES varies from 12 to 24. From these observation,
we could say that the nonlinearity of DES-like S-boxes is required to be over 18.

We measured the differential characteristics of a S-box as shown in Table 2.

Table 2: Differential characteristics of S-boxes

DES $2DES s*DES s°DES

Box | g oq | Aa | Ma gq | Aa | Ma gq | Aa | ta 04 | A
S1 79.49 | 3.76 | 16 | 84.38 | 3.44 | 14 | 73.54 | 4.09 | 20 | 74.12 | 4.07 | 18
S2 78.61 | 3.83 | 16 | 85.25 | 3.39 | 14 | 75.49 | 3.97 | 18 | 73.63 | 4.07 | 20
S3 79.69 | 3.78 | 16 | 84.38 | 3.34 | 14 | 73.44 | 4.12 | 18 | 72.85 | 4.06 | 20
S4 68.55 | 4.18 | 16 | 83.40 | 3.54 | 16 | 73.44 | 4.25 | 20 | 74.41 | 4.09 | 20
S5 76.56 | 3.86 | 16 | 82.91 | 3.57 | 16 | 70.61 | 4.41 | 20 | 74.61 | 4.07 | 20
S6 80.47 | 3.69 | 16 | 83.98 | 3.48 | 16 | 71.19 | 4.30 | 20 | 75.98 | 3.92 | 18
S7 77.25 1 3.95 | 16 | 81.93 | 3.62 | 16 | 75.39 | 3.99 | 20 | 73.54 | 4.08 | 18
S8 77.15 | 3.82 | 16 | 82.81 | 3.54 | 16 | 75.20 | 4.01 | 20 75.0 | 4.04 | 18

The uniformity of $>DES and s°DES in XOR distribution tables could be said to be worse than that
of DES and s?DES but s*DES was verified to be stronger than DES and s?DES from DC. In [7], Seberry
et al. proposed a new measure of checking the robustness of S-box against DC. As defined in Section
3, let A4 denote the largest value in the XOR distribution table of DES-like S-box and N denote the
number of nonzero entries in the first column of the table. In either case the value 2° in the first row is
not counted. R-robustness against differential cryptanalysis can be defined by R = (1 — 216)( — é\—g) We

have checked the R-robustness of DES and s’DES as shown in Table 3. All DES-like cryptosystems have



Table 3: R-robustness of S-boxes

DES s’DES s°DES s°DES

Box | N R N R N R N R

S1 | 3710316 | 37 | 0.329 | 36 | 0.301 | 32 | 0.359
52 13310363 |42 ] 0.269 | 34 | 0.337 | 34 | 0.322
S3 | 3710316 | 41 | 0.280 | 31 | 0.371 | 36 | 0.301
S4 | 2410469 | 41 | 0.270 | 35 | 0.312 | 31 | 0.354
Sh | 31 ] 0.387 | 41| 0.270 | 31 | 0.355 | 35 | 0.312
S6 | 33 ] 0.363 | 40 | 0.281 | 26 | 0.408 | 32 | 0.359
ST 13510340 | 37 | 0.316 | 34 | 0.322 | 32 | 0.359
S8 |36 | 0.328 | 36 | 0.328 | 35 | 0.312 | 36 | 0.314

the similar value of R-robustness. Thus it is difficult to decide which DES-like cryptosystem can resist
harder against DC from the uniformity of XOR. distribution tables and R-robustness.

The dependence matrix of a DES-like S-box are examined to check if DES-like S-boxes satisfy the
SAC (Strict Avalanche Criterion). The dependence matrix P = (p; ;) of the S-box is defined as follows:
The element p; ; of P is the probability that the output variable ¥j of the S-box changes when the input
variable x; is complemented. The average values, i.e., (pi,1 + pi2 + pi3 + pia)/4 of (pi;) of S-boxes in
DES and s'DES are compared in Table 4. Whenever one bit of input in s?DES is complemented, every

Table 4: Average (p; ;) values of S-boxes

Box | DES | s?DES | s°DES | s°DES
S1 | 0.620 | 0.495 0.609 0.633
S2 | 0.633 | 0.510 0.609 0.625
S3 | 0.661 | 0.505 0.617 0.620
S4 | 0.615 | 0.521 0.617 0.617
S5 | 0.633 | 0.516 0.617 0.641
S6 | 0.651 | 0.516 0.620 0.628
S7 | 0.656 | 0.516 0.638 0.630
S7 | 0.625 | 0.508 0.625 0.625

output bits can be said to change with close to the probability % But, the probability of dependence
matrix in DES, s°DES and s°DES is found to have greater value than (.6. Therefore we can infer that
Boolean functions consisting of DES, s3DES and s°DES do not satisfy the SAC.

Finally we checked the uniformity of linear distribution table of a S-box as shown in Table 5. We can
see that there was no design criteria of DES against LC but the maximal entry in s°DES is restricted
being under 16.

Thus we cannot tell which measure is the best one to check the immunity of DES-like S-boxes against

DC and LC.



Table 5: Uniformity of Linear distribution table

DES s°DES sSDES s°DES

Box | Xl om XNo|om N Al
S1 75.87 | 18 | 77.46 | 14 | 62.22 | 16 | 68.15 | 16
S2 69.95 | 16 | 77.67 | 14 | 68.57 | 16 | 68.68 | 16
S3 77.14 | 16 | 79.15 | 14 | 68.78 | 16 | 71.43 | 16
S4 58.84 | 16 | 75.45 | 14 | 65.08 | 24 | 71.64 | 16
S5 75.77 | 20 | 74.39 | 18 | 71.01 | 24 | 72.91 | 16
S6 76.51 | 14 | 78.62 | 14 | 69.95 | 20 | 72.49 | 16
S7 75.56 | 18 | 76.83 | 16 | 73.33 | 20 | 71.32 | 16
S8 73.12 | 16 | 77.57 | 14 | 70.69 | 16 | 71.32 | 16

5.2 Global Properties
5.2.1 Breaking Complexity by DC

Since the 2-round iterative differential characteristics are directly employed for the successful DC, we
compare the probability of 2-round differential characteristics and the breaking complexity of 13-round

DES-like cryptosystems by using them as shown in Table 6. This table tells us that the breaking com-

Table 6: Breaking complexity by DC

Best Char. Complexity

DES 19600000, with 1/234 27
s’DES 00000580, with 1/51 233
07¢00000,, with 1/68 235

5¢000000, with 1/68 235

s*DES | 11173737, with 1.42576 x 10~° 296
s°DES | 75175117, with 1.15513 x 10~° 296
75175317, with 1.15513 x 107° 296
75177117, with 1.02678 x 10~° 296
75377317, with 1.02678 x 107° 296

plexity of DES and s?DES by DC is more efficient than by key-exhaustive search. However, the attacking
by DC is not useful to break s?DES and s°DES. Also the Improved Davies’ attack cannot be applicable
to break s3DES and s°DES due to their design criteria.

5.2.2 Breaking Complexity by LC

In [18], Lee et al. proposed an efficient method to find the linear approximation of DES-like cryptosystems
by LC. By their method, we have checked the best probability of linear approximation of 4 DES-like
cryptosystems as shown in Table 7.

From this table, we can see that the breaking s°DES by LC needs (1.94 x 1079) 72 ~ 25788 complexity

which is greater than the breaking complexity of key exhaustive search.
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Table 7:

Best linear approximation

Round 10 12 14 16
DES 4.66 x 107° [ 9.07 x 1075 | 5.67 x10~7 | 8.88 x 10~ ¢
s2DES | 3.62x107% | 2.09x 1077 | 1.59 x 1078 | 9.17 x 10~1°
s> DES | 5.15 x107° | 1.20 x 10~° | 6.03 x 10~ 7 | 7.07 x 108
s> DES | 8.89 x 1077 | 6.94 x 1078 | 1.94 x 1072 | 1.82 x 10~

6 Concluding Remarks

Our systematic approach to immunize DES against three robust attacks is not only verified to enhance
the security of DES, but also is very simple since the current DES S-boxes can be substituted with new
S-boxes without changing other components of DES. We can conclude that three attacks to s°DES are
no more efficient than the key exhaustive search attack. In [17], Biham and Biryukov proposed some
methods to strengthen the power of DES replaced by DES-like S-boxes of s3DES in a switched order
against the key exhaustive search attack. Their methods can also be applicable directly without changing
the location of 8 DES-like of s°DES to enhance the security of s°DES against the key exhaustuve search
attack.

Finally, further works are left as open problems to evaluate that s° DES is resistant against differential-

linear attack [15] and multiple linear attack [16].
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Appendix: & DES-like S-boxes of s°DES

S1l-box
9 10 15 1 4 7 2 12 6 5 14 g 11 13 0
2 13 8 4 11 1 14 7 12 3 15 9 5 6 0 10
10 12 4 7 9 2 15 1 3 6 13 8 14 5 0 11
4 11 1 13 14 7 8 2 10 0 3 9 12 15 5
S2-box
6 3 5 0 g8 14 11 13 9 10 12 7 15 4 2 1
9 6 10 12 15 0 5 3 4 1 7 11 2 13 14 8
5 8 3 14 6 13 0 11 10 15 9 2 12 1 7 4
6 3 15 9 0 10 12 5 13 8 2 4 11 7 1 14
S3-box
11 5 8 2 6 12 1 15 7 14 13 4 0 9 10
7 8§ 1 14 11 2 13 4 12 3 6 9 5 15 0 10
g8 11 1 12 2 5 4 7 10 9 3 0 13 14
13 2 4 7 1 11 14 g8 10 9 15 0 12 6 3
S4-box
13 11 g8 14 3 0 6 5 4 7 2 9 15 12 1 10
10 0 3 5 15 6 12 9 1 13 4 14 g8 11 2 7
6 5 11 8 0 14 13 3 9 12 7 2 10 1 4 15
9 12 5 15 6 3 0 10 7 11 2 8 13 4 14 1
S5-box
12 6 2 11 5 8 15 1 3 13 9 14 7 10
15 0 12 5 3 6 9 10 4 11 2 8 14 1 7 13
1 12 15 5 6 11 8 2 4 7 10 9 13 0 3 14
6 3 10 0 9 12 5 15 13 4 1 14 7 11 8
S6-box
14 8 2 5 9 15 4 3 71 12 6 0 10 11 13
1 13 11 8 2 4 7 14 10 6 0 15 5 12 3
4 2 9 15 14 8 3 5 10 7 0 12 13 1 6 11
8 11 7 4 13 1 14 2 5 0 9 10 6 15 3 12
S7-box
4 13 10 3 7 0 9 14 2 1 15 6 12 11 5 8
9 0 15 10 12 6 5 3 14 7 1 13 11 8 2 4
13 10 3 9 0 7 14 4 8 6 5 12 11 1 2 15
10 3 12 6 5 9 0 15 4 8 11 14 7 13 2
S8-hox
1 10 2 12 15 9 4 7 14 3 5 0 8 6 11 13
4 13 7 11 2 4 1 8 0 10 9 6 5 15 12 3
10 15 12 1 9 2 7 4 13 0 6 11 3 5 g8 14
4 8 1 2 7 11 13 14 10 5 15 12 0 6 3 9
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